Automatic Building Detection from Lidar Point Cloud Data

نویسنده

  • Nima Ekhtari
چکیده

This paper proposes an automatic system which detects buildings in urban and rural areas by the use of first pulse return and last pulse return LIDAR data. Initially both first and last pulse return points are interpolated to raster images. This results to two Digital Surface Models (i.e. DSM) and a differential DSM (i.e. DDSM) is computed by them. Then using a height criterion, rough and smooth regions of the DDSM are found. Then last pulse points lying inside smooth regions are filtered using a simplified Sohn filtering method to find the so called on-terrain points by which the Digital Terrain Model (i.e. DTM) is generated. The normalized DSM (i.e. nDSM) is calculated using first pulse-derived DSM and the calculated DTM. Afterwards two separated classifications are applied on the nDSM. The final results of classifications are a set of nDSM pixels belonging to building roofs. The accuracy of the proposed algorithm is evaluated using some metrics and has proved an overall accuracy of 95.1% and a correctness equal to 98.3% and a completeness factor equal to 89.5% which show the level of the efficiency and accuracy of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

Effective Generation and Update of a Building Map Database Through Automatic Building Change Detection from LiDAR Point Cloud Data

Periodic building change detection is important for many applications, including disaster management. Building map databases need to be updated based on detected changes so as to ensure their currency and usefulness. This paper first presents a graphical user interface (GUI) developed to support the creation of a building database from building footprints automatically extracted from LiDAR (lig...

متن کامل

Building Extraction from Lidar Data Using Wavelet Analysis

ABSTRACT: How to find the exact locations and reconstruct the building models from the point clouds of LiDAR systems without any auxiliary information is a real challenge. In this paper, an automatic building extraction method based on the multi-resolution analysis using wavelet transform is proposed. The basic idea of the multi-scale edge detection is to detect the local maxima curves from coa...

متن کامل

Rule-based Segmentation of Lidar Point Cloud for Automatic Extraction of Building Roof Planes

This paper presents a new segmentation technique for LIDAR point cloud data for automatic extraction of building roof planes. Using the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separated into two groups: ground and nonground points. The ground points are used to generate a ‘building mask’ in which the black areas represent the ground where there are no laser ...

متن کامل

Building Change Detection Using Old Aerial Images and New LiDAR Data

Building change detection is important for urban area monitoring, disaster assessment and updating geo-database. 3D information derived from image dense matching or airborne light detection and ranging (LiDAR) is very effective for building change detection. However, combining 3D data from different sources is challenging, and so far few studies have focused on building change detection using b...

متن کامل

3D Building Model Retrieval System Based on LiDAR Point Cloud Filling and Encoding

Airborne Light Detection and Ranging (LiDAR) has the ability of acquiring huge and highly accurate point cloud. Therefore, the processing of huge point clouds has become an important research topic and has drawn increasing attention in the fields of remote sensing. In this paper, an automatic three-dimensional (3D) model retrieval system is introduced to retrieve building models using point clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008